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ABSTRACT

2922%

This report is tutorial in nature and deals primarily with concepts
basic to the vibration of mechanical systems and their equivalent electrical
analogies. Although both mechanical impedance and operational amplifier
circuits are considered, emphasis is given to passive mobility circuits for
the vibration of distributed elastic structures.

The single-degree-of-freedom system is used to illustrate and inter-
relate many of the concepts and definitions common to mechanical systems
and electrical circuits. The mobility concept is then extended to include dis-
tributed physical systems described mathematically as partial differential
equations. These resulting analogs are electrically equivalent to finite -
difference forms of the partial differential equations and can be used di-
rectly to synthesize complete electrical models of physical systems. Dif-
ference mobility analogs are shown for the vibration of the simple beam, the
Timoshenko beam, a curved beam, a rectangular shear panel, and a rec-
tangular plate. Similar analogs are shown for problems typical to heat

transfer and fluid flow. Qw%j“),
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ELECTRICAIL ANALOGIES AND THE VIBRATION OF LINEAR
MECHANICAL SYSTEMS

INTRODUCTION

The use of electrical analogies to solve problems common to struc-
tures and structural dynamics is not a new concept. Two of the earliest
papers dealing with these topics were written in 1933 and 1934 by Firestone
(Reference 7) and Bush (Reference 5) respectively. By a concise and
rather complete review of the literature, Higgins (Reference 10) provides
a historical perspective of electroanalogic methods. Recent authors of
mechanical vibration texts as Freberg (Chapter 10 of Reference 8) and
Thomson (Chapter 8 of Reference 18) mention electrical analogies although
such discussions are introductory in nature. More complete presentations
of structural analogies are given by Barnoski (Reference 1) and MacNeal
(Reference 13).

Although electrical analogies are discussed here in a general way,
prime emphasis is given to passive analogs of elastic structural systems.
As contrasted with active electrical analogs consisting of operational ampli-
fier circuits, the passive analog is a circuit consisting of some combination
of resistors, inductors, capacitors, and transformers. A direct or one-to-
one correspondence exists between the components in the electrical network
and the elements of the mechanical system. The exact relationships, how-
ever, depend completely on the definition of the analogy.

For dynamic simulation of mechanical structures, two types of
passive circuits are defined: 1) force-current, velocity-voltage analog,
and 2) force-voltage, velocity-current analog. Using the classic definition
of an electrical impedance, the first analogy equates electrical impedance
with mechanical mobility whereas the second analogy equates electrical

impedance with mechanical impedance.




Thus, the force-current, velocity-voltage analog may be appropriately

called a mobility circuit or mobility analog and the force-voltage, velocity-

current analog becomes the mechanical impedance circuit or mechanical

impedance analog. These two types of circuits are duals of one another

and appear topologically distinct. In either case, the same basic circuit
analyses and vibration techniques can be applied to efficiently analyze the
electrical analogs for both damped and undamped mechanical systems.

In this discussion, the force-current, velocity-voltage passive analog
or mobility circuit is emphasized. For this type of circuit, resistors cor-
respond to viscous damping, the inductors to flexibility, the capacitors to
mass, and transformers describe geometric relationships. For distributed
structures, this analog corresponds mechanically to a lumped parameter
model and corresponds mathematically to a finite-difference model. The
analog impedances are equivalent to mechanical mobilities and the analog
admittances (the reciprocals of the impedances) are equivalent to mechani-
cal impedances.

This report is subdivided into five sections. The first section uses
the single-degree-of-freedom system as a means to discuss and illustrate
mobility, mechanical impedance,and operational amplifier circuits. In
addition, frequency response functions, transformers and current gener-
ators are reviewed and placed in context of the electrical analog. The sec-
ond section cites the use of mobility, mechanical impedance, transformer,
and amplifier circuits to simulate a system described as sets of algebraic
equations. In addition, mobility circuits are emphasized for two and three-
degree-of-freedom systems and an analog equivalence of modal theory is
shown.

Section three treats passive mobility analogs of distributed structural
systems. Derivation techniques are emphasized although brief discussions

of scale factors and boundary conditions are included. Difference analogs




are shown for the longitudinal vibration of a rod; the lateral vibration of
simple, Timoshenko and curved beams; a beam on an elastic foundation;

a rectangular shear panel; and the lateral vibration of a rectangular plate.
Section four discusses mobility oriented circuits which are useful for prob-
lems typically found in viscoelasticity, heat transfer and fluid flow.

Section five presenis summary remarks on potential applications of, as

well as the distinction between, the analog circuits for structural vibra-

tions and the physical systems typical of section four.




1. THE LINEAR OSCILLATOR

1.1 MOBILITY ANALOG

(FORCE-CURRENT, VELOCITY-VOLTAGE ANALOG)

The derivation of passive analog circuits simulating linear mechani-
cal oscillators ig discussed in many introductory texts on mechanical vibra-

tions such as in Chapters 9 and 10 of Reference 8 or Chapter 8 of Reference

18. However, this effort is repeated here for completeness of this discussion.

The equation of motion for a mass-excited linear oscillator is
my +cy + ky = £(t) (1. 1)

where m is the mass of the system, c¢ the damping constant of the dashpot,

k the spring constant, f(t) the external loading applied to the mass, y the
displacement of the mass from static equilibrium, vy the velocity of the mass,
and y the acceleration of the mass. Expressed as a function of velocity, the

oscillator equation of motion becomes

mg—z+c§r+kf§rdt:f(t) (1. 2)

From basic circuit theory, the currents through a capacitor, inductor,

and resistors are shown as Figure l. 1.
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fi1gure i.1 Dasic Relationships fur Current Flow Through a

Capacitor, Inductor, and Resistor

Positive currents are shown to flow into the node and fro¥n the higher poten-
tial to the lower potential where the arrow symbolism denotes a positive
voltage drop across the circuit elements. The currents through the com-
ponents are represented by i and the voltage drops across the components
by e where the subscript ¢ refers to a capacitor, £ to an inductor, and r
to a resistor. The capacitor C has units of farads (fd), the inductor L in
henries (h), and the resistor R in ohms {2). The physics of current flow
associated with a capacitor, inductor and resistor is defined by equations

noted as functions of time.




An impedance is a quantity defined as the ratio of the Laplace trans-
forms of the voltage to the current. It is a function of frequency and appears
mathematically as a real, imaginary, or complex number. For the com-
ponents in Figure 1.1, the capacitive impedance Z , inductive impedance

C

Zl , and resistive impedance Z appear as
r

L(ec)

Zc - L)
c

- L(ez)

f L{i) (1. 3)

£

L(er)

2. Th )
r

where L( ) denotes the Laplace transform of the quantity ( ). The voltage e
has units of volts and the current i has units of amps.
Ignoring initial conditions, the first time derivative and integration

with respect to time are represented by Laplace notation as

U)l»—'
I
[o N}
o+
-
£

The capacitive, inductive, and resistive impedances given in Eq. (l.3)

become




.

|

c Cs
ZIZSL (1.5)
Z =R

r

where the operator s equals iw for harmonic steady state assumptions.

By assuming velocity proportional to voltage and force proportional

to current and noting the form of the current expressions in Figure 1.1, the

terms of Eq. (l.2) are expressed in circuit nomenclature as

C%+Re+%jedt=l(t) (1. 6)

where e is an arbitrary nodal voltage referenced to ground and I(t) corre-

sponds to the external force f(t). Comparing the terms of the above equa-

tion with (1. 2), capacitance corresponds to mass, inductance to flexibility

(the reciprocal of the stiffness), and the resistance to the reciprocal of vis-

cous damping. In terms of mechanical quantities, the analog impedances are

1 1
Z = —— =-
C sm lwIm

[l

=l

(1.7)

F Y
L

E
o |-

Electrically, Eq. (1.6) denotes an algebraic sum of four currents

acting at a node which can be easily satisfied by applying Kirchhoff's current

law.

This law states the summation of currents acting at a node equals zero.




Mechanically, Kirchhoff's current law is noted as equivalent to force equi-

librium. In funicular form, Eg. (l.7) is represented as Figure 1. 2.

!

Figure 1.2 Funicular Current Diagram for Mechanical Oscillator

From the relationships provided in Figure 1.1, these currents are simulated
by an RL C network where the resistor R, inductor L, and capacitor C are

connected in parallel as illustrated in Figure 1. 3.

ANAVANEAN
C L—J§ k
m
y
£(t)
Mechanical Oscillator Analog Circuit

Figure 1.3 Sketch of the Mechanical Oscillator and the Equivalent
Mobility Analog Circuit




The topological similarity between the mechanical diagram and the analog
circuit is a characteristic typical of this type of analog and readily promotes
an intuitive understanding of the electrical circuits. The applied load f(t)

is represented as a current generator whose current flow is directed into

the node. The fixed boundary conditions at the base of the oscillator are
represented as grounded terminals on both the resistor and inductor. The
inertial force of the mass is shown as a capacitor referenced to ground.

Since Newton's second law of motion requires the inertial force be referenced
to an absolute or inertial frame of reference, electrical ground thus corre-

sponds to an inertial reference frame.

1.2 MECHANICAL IMPEDANCE ANALOG

(FORCE-VOLTAGE, VELOCITY-CURRENT ANALOG)

Consider the development of the force-voltage, velocity-current or
the mechanical impedance analog of the mechanical oscillator. For the

circuit elements in Figure 1.1, the voltage drops across the capacitor,

. SIS
1aGudior,

})

and resistor are

£

1 .
ec_lecdt
e-Ldll (1.8
L dt - 8)
e =Ri
r r

Assuming the current proportional to velocity and the voltage proportional

to force, the oscillator equation of motion appears in the form

mg—;+ci+kfidt=E(t) (1.9)




Comparing the terms of the above equation with the voltage expressions of
(1.8), mass is noted as an inductance, the dashpot as a resistor, and the
flexibility as a capacitor.

Electrically, Eq. (l.9) is an expression of Kirchhoff's voltage law;
that is, the sum of the potential drops (or rises) around a closed loop is

zero. Applying Kirchhoff's voltage law to Eq. (l.9) results in the circuit

shown as Figure 1.4

Figure 1.4 Mechanical Impedance Passive Analog
Circuit for a Mechanical Oscillator

where the voltage drops across the circuit elements are equivalent to the
terms in (1. 9). The applied loading is shown as a voltage generator refer-
enced to ground. As contrasted with the parallel arrangement of circuit

elements in the mobility analog, the circuit elements are connected in

series.

1.3 IMPEDANCE PROPERTIES, MOBILITY AND FREQUENCY
RESPONSE FUNCTIONS

In general, analog simulations using mechanical impedance (force-

voltage, velocity-current assumptions are associated with concepts common

10




to loop circuits whereas simulations using mobility (force-current, velocity-
voltage) assumptions are associated with concepts common to nodal circuits.
In appearance, mobility circuits are distinct from mechanical impedance
circuits but are related electrically as dual circuits of one another. Irre-
spective of the particular analog circuit used, the same circuit analysis
procedures are applicable. For interpretiing the mechanical equivalent of
the analog results, however, the analog must be explicitly defined.

In this text, the word impedance implies an electrical impedance of
an analog circuit defined as the ratio of the Laplace transforms of the voltage
to current both referenced to the same datum at the same instant of time.
Any other usage will be specifically noted. If the circuit is a force-current,
velocity-voltage analogy, the impedance is mechanically equivalent to
mobility and the circuit is called a mobility analog or mobility circuit. If
the circuit is a force-voltage, velocity-current analogy, the impedance is
mechanically equivalent to mechanical impedance and the circuit is called a
mechanical impedance analog or mechanical impedance circuit.

The relationships between the properties of a mechanical system, the
mobility analog, and the mechanical impedance analog are summarized in
tabular form as Figure 1.5. For example, mechanical mobility (or simply
mobility) is equivalent to an impedance in 2 mobility analog but equivalent to
an admittance in a mechanical impedance analog. Thus, mobility and mech-
anical impedance concepts are reciprocals of one another.

Focusing attention on the mobility analogy, mobility rules are analogous
with impedance laws and mechanical impedance rules are analogous with ad-
mittance laws. Circuit techniques for adding impedances or admittances in
series, in parallel, or in series-parallel combination find direct application.
For impedance in series, the resultant impedance is the sum of the individual
impedances. For impedances in parallel, the resultant impedance is the

reciprocal of the sum of the individual admittances. For a series-parallel

11



Mechanical
Mobility Impedance
Mechanical or or
System Force-current Force-voltage
Velocity-voltage Velocity-current
Analog Analog
Mass m Capacitance C Inductance L
Viscous c Conductance |G(I/R) Resistance R
Damping
1
Flexibility * Inductance L Capacitance C
Mobility m Impedance z Admittance Y
hanical
Mechanica z Admittance Y Impedance z
Impedance m

Figure 1.5 Basic Relationships Between Mechanical Systems and Their
Equivalent Analog

combination of impedances, the original analog circuit usually can be
reduced so that the preceding two rules can be applied to calculate a result-
ant impedance.

Considering the mobility analog strictly in the sense of an electrical

network, the oscillator circuit can be reduced to an equivalent impedance
(’;)

‘I’ I(t)

Z, to ground as shown in Figure 1. 6.

o

Figure 1.6 Reduced Equivalent Circuit for the
Mechanical Oscillator

12




The equivalent impedance Z_ is the resultant impedance of the resistor,

0
inductor, and the capacitor connected in parallel. From fundamental
circuit theory, the resultant impedance for the RLC network of Figure

1.3 is given as

(1.10)

where Zc is the capacitive impedance, Zr the resistive impedance, and

Zf the inductive impedance. Substituting the impedance relationships given

by (1.5) into Eq. (l.10) produces for harmonic motion

Z = (1.11)
0 . 1
- 4+ C ——
i{wC wL)
Inserting the mechanical equivalents of the resisior, capacitor, and inducter
into the above provides
1 i -
< “n
ZO:1+—-5 1+ k i 2 w (-1
c [ 2] mow [1 -(-&)—) +1i2¢ ‘—]
ms n w
n n

where the undamped natural frequency w and damping ratio { are related

to the oscillator parameters as

2
w -k and 2w =
m

c
3 h ™ (1.13)
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Electrically, the equivalent or resultant impedance defined by

Eq. (1. 10) may be categorically noted as

Z,=R,+iX (1

.1
0 0 4)

where RO is the resistance of the circuit in ohms and reflects the

mechanical damping, while XO is the reactance of the circuit in ohms

and corresponds to the undamped dynamic properties. In terms of a mag-

nitude and phase angle, the equivalent impedance may be expressed as

ZO:lHO(w)

i (1.15)

where the absolute magnitude is

2 2
Ho(w)l = Ry + X (1.16)

and the associated phase angle (defined as the angle by which the voltage

leads the current) appears as

X
-1 70
0=tan = (1.17)

0

The reciprocal of an impedance is an admittance and likewise consists

of a real and an imaginary part written as
Y = + iB
0= G "t

0 (1.18)

where GO is the real component of the admittance noted as the conductance

14




and B0 is the imaginary component of the admittance noted as the suscep-~
tance. The admittance has units of mhos. The relationships between the
impedances and admittances of the mobility analog with the mechanical

impedance and mechanical admittance are

Z = =—= Y (1.19)

where mZO is the mechanical impedance and rnYO is the mechanical ad-
mittance. The mechanical admittance is the ratio of force to velocity and
is noted as the reciprocal of the mechanical impedance.

It is sometimes mathematically convenient to use admittances rather
than impedances in network analysis. For example, an alternate way to com-
pute the equivalent impedance ZO for the oscillator is to add the admittances
of the inductor, capacitor, and resistor, then take the reciprocal of the re-
sultant sum. From Eq. (1l.11),the equivalent admittance Y, of the oscillator
is
Y =24 i(eC - —) (1. 20)
0 R wL 7
and, upon substituting the mechanical equivalents of the resistor, capacitor,

and inductor, the admittance Y'0 becomes

. k
- + - — .
Y0 ¢t jlmo w) (1.21)

Plotted on log-log paper as curves of magnitude versus the excitation
frequency, the mobility and mechanical impedance magnitudes for linear

oscillator appear as Figures 1.7 and,1.8. Also shown are the individual

15



Magnitude of the (Impedance) Mobility ' Z |

w
n

Excitation Frequency w

Figure 1.7 Plots of the Magnitudes of (Impedance)

Mobility Functions
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Y

Magnitud: of the (Admittance) Mechanical Impedance

n

Excitation Frequency w

Figure 1.8 Plots of the Magnitudes of (Admittance)
Mechanical Impedance Functions
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mechanical impedances for the oscillator mass, flexibility, and damping.
Since the mobility analog is used, mobility is equivalent to an impedance
in the analog circuit whereas mechanical impedance is equivalent to an ad-
mittance in the analog circuit. As expressed by Eq. (l.19) the curves in
Figures 1.7 and 1. 8 are noted as reciprocals of one another.

The plots for the individual components appear as lines with constant
slopes. The capacitive impedance plot corresponds to a constant mass line
whereas the inductive impedance plot corresponds to a constant stiffness
line. The intersection of the capacitive and inductive impedance lines yields
z

0
is noted predominantly as a spring at frequencies somewhat below w and
n

the undamped natural frequency w of the oscillator. The response

as a mass at frequencies >> w . The resistive impedance is independent
n

of the frequency with a magnitude % equal to the maximum value of ZO.
Mechanically, this maximum ZO value is interpreted as the maximum
velocity response of an oscillator excited at the mass by a sinusoidal force,
and occurs when the excitation frequency equals the undamped natural
frequency.

For a linear system, the ratio of the steady state output response to
a simple harmonic input excitation is a frequency response function. This
is consistent with the definition of an electrical impedance where s = iw for
steady state assumptions. Thus, for any arbitrary linear system, many
such functions exist and depend only upon the units of both the output re-
sponse and input excitation. For the mobility analog, the impedance is one
such quantity and appears as a complex valued function of frequency in the
form given by Eq. (1.15). The absolute magnitude

Ho(w) is commonly

called the gain factor and the associated phase angle 6 is the phase factor.
Expressed in terms of the oscillator parameters, the magnitude and phase

angle of the velocity to force frequency response function ZO are shown as

Egs. (1.22) and (1. 23).
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|: IHO(w)'= (1.22)

2
1 _<—‘” )
-1 wn
2t
w

n

6 = tan (1.23)

The

%0

plot in Figure 1.7 is a log-log plot of Eq. (l.22) whereas the YOI
plot in Figure 1.8 is a log-log plot of the reciprocal of Eq. (l.22).

For steady state conditions, dividing Z_ by the Laplace operator

0
(s = iw) yields the displacement to force frequency response function and
multiplying ZO by s yields the acceleration to force frequency response
function. The magnitudes of these response functions in addition to the

magnitude of the velocity to force frequency response function are

sketched as Figure 1. 9. The top row of curves display the magnitudes of the
response functions versus the frequency ratio w/wn and the lower row of
curves show the phase angle variation with the frequency ratio w/wn. At the
undamped natural frequency (w/w = 1), the phase angles are noted as 90

¥ Y

f £’
A more complete discussion of frequency re-

and

degrees and the magnitudes are approximately maxima for
L]

4]

and is a maximum for el
sponse function is given by Piersol in Section 7 of Reference 15.
The sharpness of the frequency response curves at the natural frequency

of the system is usually described by the Q of the system defined as
f
n

Q = Kf—(i3—db) (1. 24)
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where { 1is the undamped natural frequency of the oscillator or the center
n

frequency (approximately) of the response function and Af(+3 db) is the half-

power bandwidth. This bandwidth is the frequency interval 3 db down from

the response magnitude at the center frequency f . The 3 db points corre-
n

spond to amplitude values which are 0.707 times the magnitude at the center

frequency.

1.4 TORSIONAL SYSTEM

This system may be considered as a torsional oscillator and consists

of a disk attached to a rigidly mounted shaft as shown in Figure 1. 10.

yd zZ /7 /L
K
i
(L\ R
‘W)'\\

Figure 1.10 Disk-shaft Mechanical System

The equation of motion for this system is

J———Z-+kt9:0 (1. 25)

where J is the mass moment of inertia about the axis of rotation, kt the

torsional stiffness (spring constant) of the shaft, 9 the angular displacement

21



of the disk from static equilibrium, and t the time. Note that the form of
this equation is identical to an undamped linear oscillator. Consequently,
the analog circuit for the torsional oscillator appears identical to the analog

circuit for an undamped linear oscillator as sketched in Figure 1. 11.

<

A
L
Ce
Figure 1. 11 Passive Analog Circuit for the
Disk-shaft Mechanical System

This simple LC circuit is the mobility (force-current, velocity-voltage)

analog for the torsional oscillator. The inductor Le corresponds to the

‘torsional flexibility l/kt’ the capacitor Ce to the polar mass moment of

inertia of the disk J, the voltage e, to the angular velocity, the current

0
through the capacitor as the inertial force, and the current through the
inductor as the shaft torque. In terms of impedances, the torsional circuit

elements are related as

; - 1o
zl(e) = 1¢.>Le = kt
(1. 26)
1 i
0) = = o —
Z'c() imCe wJ
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Damping, if included, is noted as a resistor in parallel with the inductor
of magnitude

1

[

Z (9 =Ry=
t

where <, is the viscous damping coeificient for torsional vibration.

1.5 TRANSFORMERS AND LEVERED SYSTEMS

Typical problems in mechanical vibrations often include systems
with rigid, weightless rods or levers. These levers are represented
electrically by ideal transformers.

Symbolically, an ideal multi-winding transformer may be sketched

as shown in Figure 1.12.

Pictorial E (_h N AN I
Sketch 1 q 1 | . 2
1 E
) ! I 3
I3
Il\\ I
DU, *— —_
Circuit ? N A E
Schematic N 2 2
E z N J —
1 EN L
1 ¥ F
N3 E3

Figure 1. 12 Ideal Three-winding Transformer
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The pictorial sketch depicts the transformer as discrete windings
about a ferromagnetic core where ¢ is the magnetic flux in the core. The
direction of the windings about the core dictates the polarity of the trans-
former and the assumed positive directions of current flow and voltage
drop across the individual windings are shown. The transformer ideally
is a non-dissipative magnetic circuit where the voltages, currents, and

number of turns in the windings are related as

n

Y N I, =0 (1.27)

j=1

E. E.,,

—ﬁl:ﬁl— j=1,2, 3...n (1.28)
iy

Eq. (1.27) is the law of Biot and Savart and interrelates the number of
turns and current in each individual winding. Eq. (1.28) is Farraday's
law of electro-magnetic induction and interrelates the voltage and number
of turns in each individual winding. Since an ideal transformer consumes

no power, the product of the voltages and currents for all windings is

n n
Y P.=) E I1=0 (1.29)

Applying the current and voltage laws to the three-winding transformer

yields
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IN +IN_+IN_=0

11 272 33

- - = ——

Substituting (1. 31) into (1. 30) provides

Elll + EZI2 + E?’I3 =0

(1.

(1.

(1.

For certain applications, it is convenient to convert a conventional

two-winding transformer circuit into an equivalent auto-transformer.

Schematically, two such circuits are shown as Figure 1. 13.

O

Conventional Two-winding
Transformer

1
T i
Nl IZ
Tk
1 N2 EZ
4
Equivalent

Auto-transformer

Figure 1.13 Conventional Two-winding Transformer and the

Equivalent Auto-transformer
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Applied to the conventional two-winding transformer, the current and

voltage laws produce

+ =
IlNl I_N 0

2 2
(1.33)
T2
Nl NZ
For the auto-transformer, the current and voltage laws yield
E
T2 5
sk 1 + N}
NZ N 2
(1. 34)
IlNl + (I1 + IZ) N2 =0
From these equations, the relationships between the turns for the two-
winding and auto-transformers are
Nl = N1 - N2
(1.35)
N2 = N2

It is common in transformer usage to transfer a series impedance

across the transformer windings. Schematically, this is depicted by

Figure 1. 14.
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T4 ¥ F — 4T
S +/ +
E N N _—
1 % 1 g 2 EZ, E] gNl g NZ EZ
+ +
4 L o 1 L o L
Original Circuit Equivalent Circuit with the
Transferred Impedance
Figure 1.14 Impedance Transfer Across a Transformer
Using the transformer voltage laws, the voltages across each of the im-
pedances are
Nl
AE(ZI) = El + —N—-EZ
2
(1.36)
b NZ
= + —
AE(ZI) EZ Nl E1

where AE( ) denotes the voltage difference across the terminals of the
element specified within the parentheses. Requiring the power dissipation

to be the same in each circuit provides

2 % 12
N .F; ] [AE;ZI)] ] [AE(Z;I)] -
1 Z1

Substituting the voltage difference equations of (1. 36) into the above yields
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Z (1.38)

Z:;: B 2
- 1

1 Tl N

N\Z
1)

Thus, the transferred impedance Z1 is related to the original impedance

Z1 by the square of the turns ratio.

Consider the spring-mass-lever mechanical system depicted as

Figure 1. 15.

A
-

Ty —F

Figure 1.15 Spring-mass-lever Single Degree-of-freedom System

The rod (lever) is assumed rigid, weightless, and of length £. The system
is hinged at one end, free at the other end with an attached mass m, and
has a restoring torque due to the elastic spring k located at position a.

Assuming small displacements, the lateral deflections of the mass

Yo and spring constant Y, are related as

Jm Yk

- — =0 (1. 39)

where 8 denotes the angular rotation of the rod. Summing torques about the

hinged support yields the equation of motion as
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o 2
m9+k(%) 0=0 (1. 40)

or in reduced form

m0 + k,0=0 (1. 41)

2

where ko is the equivalent spring constant equal to k (%) .
The mobility circuit or force-current, velocity-voltage analog for the

spring-mass-lever system is shown as Figure 1.16.

1,
+ +
N 1 N 2 C

Figure 1.16 Passive Analog for the Spring-mass-lever
System of Figure 1.15

* *
1 2
the spring as the inductor L, and the mass as the capacitor C. The inductor

The rigid rod is shown as an auto-transformer with N, = a and N'lr + N, =12,
is represented symbolically as a resistor to eliminate confusion between
transformer windings and inductors. Although this departure from conven-
tional symbolism provides no particular advantage for this problem, the

advantages become apparent when interpreting L.C Transformer circuits

for more complicated structures such as a beam.
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The hinged end condition is simulated by grounding the circuit at the
negative end of the N;k winding whereas the free end is shown as a node with
an attached capacitor. The voltage across the capacitor denotes the angular
velocity at the free end of the rod and the voltage across the inductor de-
notes the angular velocity of the rod at position a. The relationship be-

tween the velocity at the end of the rod and the velocity at position a is

Ym k .
- = = e (1. 42)
which is obtained by taking the first time derivative of (1. 39). With voltage
proportional to velocity, the above expression is identical in form with the
voltage relationships for the auto-transformer given by (1. 34).

By making use of the impedance transfer procedure depicted in Fig-
ure 1. 14, the auto-transformer can be eliminated yielding the LOC analog

circuit of Figure 1.17.

ey
;

Figure 1.17 Equivalent Mobility Circuit for Figure 1. 16

From the impedance transfer expression given as Eq. (1. 38), the inductors

in the circuits of Figure 1.16 and 1. 17 are related as

) L (1. 43)
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Since stiffness is inversely proportional to inductance, Eq. (1.43) yields

the relationship between the equivalent spring constant k_, and the original

0
spring constant k as

k.= %k (1. 44)

This equivalent spring is noted to be the same as that given by Eq. (1.40).

1.6 ACTIVE ELECTRICAL ANALOGIES

In contrast to modeling an elastic structure using passive components,
such a system can be simulated using a differential analyzer. The analyzer
is basically an assemblage of passive components and active electrical ele-
ments such as multipliers, function generators, and operational amplifiers
which are interconnected to reproduce the equations that describe the physi-
cal system. These active circuits are specifically intended to analyze sets
of ordinary differential equations where timce usually is the indopendent vari-
able and find wide application in control system studies and problems of
purely mathematical origin. Other topic areas generally associated with

active circuits are nonlinear differential equations, simultaneous solutions
to sets of linear or nonlinear algebraic equations and transcendental equa-
tions in one variable. Although iterative methods are available to deal with
certain types of partial differential equations, these are more easily treated

by passive analogs.

The operational amplifier is extremely important to active circuit
simulation. Coupled with feedback circuits, this device is used typically to
create summing amplifiers, summing integrators, and inverters. Basically,
an amplifier is an electronic device where the output-input voltage is related

by a negative constant factor as shown in Figure 1.18.
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in e
A >>1

Figure 1.18 Basic Operational Amplifier

The coefficient A is the gain factor and has a magnitude typically ranging

from 104 to 108. A typical feedback circuit is sketched as Figure 1.19

Z
el R Z1 0
e Z
2 o 2 —e €
e3 23 eg

Figure 1.19 General Feedback Circuit

where the input impedances are noted as ZI’ ZZ’ and 23; the input voltages

by e

1° €2’ and €53 the amplifier input voltage by eg; the feedback impedance

by Z

0’ and the output voltage of the amplifier by ey It is desired to cal-

culate the relationships between the output voltage and the input voltages

assuming no current flow through the amplifier. This assumption corre-

sponds to an infinite impedance for the basic amplifier and guarantees cur-

rent flow through the feedback impedance. Summing currents at e accord-

ing to Kirchhoff's current law yields

=0 1.45
Z Z Z Z ( )
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e
Noting the amplifier input voltage is approximately zero as eg = -7&9.: 0,

the above equation reduces to

N

VA

N

-eO:-Z£e1+-i—ge,+-,,—oe3 (1. 46)
1 P

If the same type of components are used for the feedback and input
impedances, the impedance ratios reduce to constants and Figure 1.19
appears as a summer circuit. This often is done using precision resistors
as these are usually much less expensive than either precision capacitors
or inductors. If the feedback and input components are different, the im-
pedance ratios contain the Laplace operators s or 1/s and Figure 1.19
becomes a summer circuit containing differentiators and/or integrators.

As an example, consider the feedback circuit shown as Figure 1. 20.

Rl C .

T
e AN N

‘1 1
;

e

2 - 1 %o
Rj3

€3 —VW—
Figure 1.20 Typical Operational Amplifier-feedback Circuit

|
‘ Substituting the capacitive and resistive impedances of (1. 5) into Eq. (1. 46)
|
\

yields

- (1.47)




As a function of time, this equation may be expressed as

- = + —
TR C fel dt C eZ+R C feS dt (1.48)

Thus, as shown by Eq. (1.48), this feedback circuit is a combination summer-
integrator where the passive components form constant coefficients.

By connecting operational amplifier and feedback circuits in tandem,
the linear oscillator is represented by simulating the velocity to force fre-

quency response function. Consider the following network shown as

Figure 1. 21
CZ
, IIL
G2 '
'
f
E + R4 : RZ e!
— , ——AAN— --—-3
: i
! e3l
ell An
R3

Figure 1.21 Active Circuit for a LineariOscillator

where Kl , KZ , and K_ denote variable potentiometers. The input-output

3
relationships for the operational amplifiers are

1 171

V= o 1.4
€y = 8, (1.49)
I——

e3- A3e3




where the prime superscripts denote output voltages. Applying Kirchhoff's

circuit law at each of the amplifier input nodes provides

1 3 1 3 1 171

: + -el)= .

at e R R + R + Cls (e1 el) 0 (1. 50)
b “< 1

. v - - 1

ate, 1 ey = -hye, = -AKe (1.51)
€3 - e!

A . Cal) =

at ey Rz + CZS (e3 e3) 0 (1.52)

Substituting (1. 51) and (1. 52) into Eq. (1.50) and rearranging terms produces

the voltage ratio

e! -K
1 - 3
E R R A_K_ (1.33)
4 4 4 C
— K., + R C s+
R1 1 471 R3R2CZS
which can be expressed in the form
K3R1
. -
a 17 (1. 54)
E Ly R1 Cl s AZKZ
s
K1 R2R3C1CZS

The velocity to force frequency response function is given by the

impedance of (1. 12) and can be restated as
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Z = = .
. " (1.55)
e 2| = 1+ —=s|1+—
c 2 W 2
ms n S

where the undamped natural frequency and Q of the oscillator are expressed

as

2 k
w =
n m
(1.56)
Q==
Cw
n

By comparing directly the terms of Eq. (1.54) and (1. 55), the relationships
between the quantities in the operational amplifier circuit and the guantities

in the oscillator frequency response function appear as

K_R
l:K3R1: Peak Gain
© 1%y
o ®&
— = (1. 57)
w K
n 1
2 AZKZ
W ST
n R2R3C1C2

Rather than change the passive components in the amplifier circuits, it
becomes clear from (1. 57) that the potentiometers are used to conveniently

adjust the oscillator parameters.
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1.7 CURRENT GENERATORS

In passive element simulation, the elastic structure is represented
electrically by some combination of resistors, inductors, capacitors, and/
or transformers. External loadings applied to the mechanical system, how-
ever, are usually represented by active circuits connected to form a current
generator.

A current or force generator is a device whose output current is inde-
pendent of its output voltage. One such operational-amplifier circuit called
a Type-Il current generator (see pg.190, Reference 13) is represented

schematically as Figure 1.22.

e Z
-i 5 5 ZZ
3 Z3 Zl—
z A Z ‘o
4 e VA 2 0
p— [] ) C ; ' . .
Z \ |
g \ ! ' l : Yo
L =J 1 |
1 ! e, . 1 {
e € s o
1 1 2 <
.
<F%
v
Figure 1.22 Amplifier Circuit Representing a Current Generator
The input-output relationships for the amplifiers are
- ! =
e Ale1
(1.58)
- ! =
2 = A%

and the gains of the amplifiers (A1 and AZ) are assumed much greater than

one.
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Applying Kirchhoff's current law to nodes e, and e, yields

e e Ke e!
3 4 0 1
! - +t =+ + = = :
ZI satef-= to t ot = 0 (1.59)
3 4 g 1
e e e! e +12
5 6 1 0
Zl'sate'.-—+——+—+————-—:0 (1. 60)
2 Z
Z5 Zé c ZZ
where
e - e e
2 0 0
I=———=1_+— (1.61)
Z0 0 Rk
Solving the above equations for the output current IO produces
I ZZ Zl o 4 Zl o 1 ZZ N ZZ
= - - - — e — e
0 ZOZC 3 3 4 4 Zo 5 5 6 6
(1. 62)
K Z
+ ZZ Zl 2 C C o
zZ 7 B i
0 ¢ Zg k2 ZZ 0
Setting Z2 = ZC and assuming the impedances in the amplifier circuit are

resistors, the output current becomes
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(1.63)

Setting the voltage gain of the potentiometer across the output voltage €

equal to

w0

o\ R
K = 1+—P:—§—3 )1.64)

ot
ot

reduces the €5 coefficient in the above equation to zero and provides the

output current as
S B
I = — — e t—e | —|==e_+
R R }

This expression is the output current of the current-generator and is noted

as independent of the output voltage e Although not shown explicitly in the

o
schematic of Figure 1.22, the common terminals for both amplifiers are

connected to ground.
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2. MULTI-DEGREE-OF-FREEDOM SYSTEMS

In the previous section, a single degree-of-freedom systefn was used to
introduce concepts commeon to (1) the mobility or force-current, velocity-voltage
analog, (2) the mechanical impedance or force-voltage, velocity-current analog,
and (3) operational amplifier or active circuits. In this section, these concepts

will be applied to simulating systems with two or more degrees-of-freedom.

2.1 ALGEBRAIC SYSTEMS

Consider, as an example, a mechanical system fully described by the

algebraic equations

6x1-x2-3x3 = -1
-x1+4x2- x, = 2 (2.1)
-3x1 - x, + 5x3 = 3
In matrix form, these equations appear as
6 -1 -3 X, -1
-1 4 -1 x, = 2 (2.2)
-3 -1 5 X3 3

where the unknowns are expressed as the {x} column matrix, the coefficients
of the equations are the elements of the square matrix, and the constants on
the right-hand side of the equations are given also as a column matrix. The
coupling terms of the equations are noted as the off-diagonal elements of the
square matrix.

Interpreting the unknowns as nodal voltages, Kirchhoff's current law

can be applied to yield the resistive network shown as Figure 2.1.
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Figure 2.1 Nodal Analogy for the
Algebraic System’”

The coupling terms are noted as resistors interconnecting the appropriate
nodes. For this circuit, the coupling resistors form a delta(A)circuit whose
magnitudes are reciprocals of the off-diagonal matrix elements. The right-
hand side of Eq. (2.2) is formed with the use of the batteries as voltage
sources and connected as shown. Note that the minus sign (-1) for the first
equation of (2.1) is created by grounding the positive terminal of the half-
volt battery. This can be easily checked by applying Kirchhoff's current law
to the x) node.

Interpreting the elements of the x column matrix as currents, Kirchhoff's

voltage law can be applied to yield the resistive network of Figure 2. 2.
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Figure 2.2 Loop Analogy for the Algebraic System

The coupling terms are shown as resistors common to two circuit loops and
have magnitudes equal to the off-diagonal elements in the 3 by 3 matrix of
Eq. (2.2). The coupling resistors for these equations form a wye network;
and, as before, batteries are used as the voltage sources to represent the
righthand column matrix of Eq. (2.2).

To reduce the network of Figure 2.1 into a tractable series-parallel
combination, the resistive delta network must be reduced to an equivalent
wye network. Conversely, the wye circuit in Figure 2.2 must be reduced to
an equivalent delta network before the loop analogy can be analyzed using
series-parallel impedance relationships. These delta-wye transformations
are found in most standard texts of circuit analysis.

To conveniently simulate Eq. (2.1) using operational amplifiers, the

original equations are first restated as
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- 1,1 ;1
T 62T 253
S T S 2 3
X772 72" 718 (2.3)
——+§- + =x
X375 7%% 2

Using resistors for the feedback and input elements, amplifier circuits

simulating the equations of (2.3) appear as Figure 2. 3.

18 1Q

Figure 2.3 Operational Amplifier Circuits for the Algebraic System
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" The three amplifiers with the input and feedback resistors equal to unity are

sign reversers and used to obtain positive values of X 0 X5 and x The

3
coupling terms are obtained by interconnecting appropriate amplifier output
voltages as input voltages to other summing amplifiers. The constants
(-1, 2, and 3) are created by using batteries to form biased voltage inputs

to the summers.

Defining the unknowns as voltages, the transformer voltage law provides

a multi-winding transformer analogy shown as Figure 2. 4.

/ +
X, @——————
1 + +
1 6 1 3
] +

+

Figure 2.4 Transformer-voltage Analogy for the Algebraic System
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This analogy consists of three interconnected four-winding transformers
whose turnsratios are equal numerically to the elements of the 3 by 3 matrix
appearing in Eq. (2.2). The sign changes are accomplished by reversing the

polarity of the appropriate transformer windings, and the right-hand column

matrix of {2. 2} is simu e generators.

Defining the unknowns as currents, the transformer current law pro-

duces a multi-winding transformer analogy shown as Figure 2. 5.

X
o 1 XZ X3
la
+ + .
1 3
1 6 c s
+ +
+
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Figure 2.5 Transformer-current Analogy for the Algebraic System

This circuit is a dual network of Figure 2.4. Except for polarity changes in
the windings where the current generators are applied, the transformer

circuitry is identical. As contrasted with voltage generators, the right-hand
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column matrix of (2. 2) is formed by current generators applied at the shown
nodal locations. Note that the nodal locations for applying the external gen-
erators and measuring the unknowns for the current analogy differ from those

used in the transformer circuits of Figure 2. 4.

2.2 DISCRETE MECHANICAL SYSTEMS

In the previous section, various electrical analogies were illustrated
simulating a hypothetical mechanical system depicted as a set of algebraic
equations. Although all of the analogies are electrically equivalent to the
same three algebraic equations, the form and appearance of each circuit
are totally dependent on the defined relationships between quantities in the
mathematical and electrical systems.

In many instances, mobility circuits (which is another name for force-
current, velocity-voltage analogs) are topologically similar to mechanical
systems. Thus, these analogies can be drawn simply by sketching the
mechanical system where masses appear as capacitors, springs as inductors,
dashpots as resistors, and rigid levers as transformers. Restricting atten-
tion to mobility analogs, consider by way of illustration Figures 2.6 through 2.10.
depicting mechanical systems and their equivalent mobility circuits.

The nodal voltages represent velocities at the corresponding positions
in the mechanical diagram and current generators represent the external
loads acting on the mechanical system. Electrical ground is shown symboli-
cally as * and corresponds to the fixed boundaries. For the RLC networks,
the spring is sketched as an inductor whereas, whenever transformers are

used, the spring is sketched as a resistor.
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Figure 2.6 The Vibration Isolator System and its Equivalent Mobility Analog
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Figure 2.7 Three-Degree-of-Freedom System and its Equivalent Mobility

Analog
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Figure 2.8 Composite Three-Degree-of-Freedom System and its
Equivalent Mobility Analog
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Figure 2.9 Composite Torsional System and its Equivalent Mobility Analog
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2.3 MODAL THEORY AND ITS ANALOG EQUIVALENCE

A typical and classical approach for calculating the dynamic responsec
of multi-degree-of-freedom systems is the use of modal theory. This theory
is a separation of variables technique and represents the displacements at

various positions on the structure as

<Y> = [4] {q}, (2. 4)

where

{y} is a column matrix denoting the displacement-time

histories at spatial locations on the structure

(4] is a square matrix consisting of the mode shapes of

the structure

{q} is a column matrix denoting displacement-time histories

of modal oscillators in generalized coordinates

The <y> column matrix is a function both of space and time whereas the
modal matrix is a function only of the space coordinates and the generalized
coordinate column matrix is a function only of time. Mathematically, Eq. (2. 4)
can be thought of as a transformation relating the physical coordinates of the
mechanical system with the generalized coordinates defined by modal theory.
By using the orthogonality properties of normal modes, it is found that the
generalized coordinates represent the output response from linear oscillators
whose coefficients are described in terms of generalized mass, generalized
stiffness, generalized damping, and the generalized force. Each mode shape
has an associated linear oscillator in generalized coordinates which is
appropriately called the modal oscillator.

Using the transformer voltage laws, an electrical representation of

Eq. (2.4) is sketched as Figure 2. 11.
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Figure 2.11 Modal Analog for an N-degree-of-freedom Mechanical System

The transformer windings denote the mode shapes of the structure and the
RLC circuits denote the modal oscillators. The overbar in the modal circuit
refer to the generalized force (I), the generalized flexibility (L), the gener-
alized mass (C), and the generalized damping (R). The transformers shown
are noted as n-winding transformers which, depending on the magnitude of n,
may be impractical to obtain electrically. However, in concept, any linear

n-degree-of-freedom system may be simulated by the modal analog shown

above.
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3. DISTRIBUTED STRUCTURAL SYSTEMS

Contrasted with discrete multi-degree-of-freedom systems, the vibra-
tion of a distributed or continuous elastic structure appears mathematically
as a partial differential equation instead of sets of coupled ordinary differential
equations. This equation is functionally dependent upon both the spatial coor-
dinates and time. Except for simple structural problems, explicit analytical
solutions to such equations are nontrivial mathematical tasks and, in many
cases, an understanding of the physical problem is masked by the shear pre-
ponderance of mathematical details.

Consequently, in engineering practice, it is common to study the
dynamic behavior of a distributed structure by examining a lumped model of
the original structure. Mathematically, matrix techniques are used to analyze
the multi-degree-of-freedom or lumped model. Electrically, passive mobility
circuits can be used to simulate the lumped model,and the analysis can proceed
using either a passive analog computer or digital computer.

The circuits to be considered here are mobility analogs for differential
segments of a variety of elastic structures. These analogs represent the
differential structural segments as difference segments and are used to
synthesize complete electrical models of structural systems. In addition to
elastic structures, the derivation procedures can be applied to most physical

systems described by partial differential equations.

3.1 LONGITUDINAL VIBRATION OF A ROD
The equation of motion for the longitudinal oscillation of a thin, uniform,
homogeneous rod appears as
2

2

AR 2@ _ 8u (3.1)
2 2
ox ot
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where A is the cross-section area, E the Young's modulus, m the mass per
unit length, t the time, u the longitudinal displacement and a function of x

and t . and x the spatial position along the length of the rod. Expressing the
spatial derivative as a finite-difference expression yields the original partial

differential equation as

% [(um’1 - un) - (un - un_l)] = mAx U (3. 2)

n

where the double dot notation { ) denotes the second time derivative of { ).
The second partial derivative with respect to x is reduced to difference form

‘as

2
0 Un B Ax ! Ax(un)] _ Ax[urﬁ-—é- i un—%] 3 (un+l mu) - v —l) (3. 3)
2 2 - B
ox (Ax) (Ax)‘2 (Ax)2
while the first partial derivative is noted as
A

ox Ax

where Ax is the difference length of the rod segment and Ax( ) denotes the
change of the quantity ( ) with respect to the x coordinate. For more com-
plete discussions of finite-difference techniques applied to structures, the
reader is directed to Section 2. 9 of Reference 4.

Interpreting the longitudinal displacements of (3.2) as voltages at the
nodal position n+ 1, n, and n - 1, Ohm's law and Kirchhoff's current law

are applied to yield the funicular current diagram shown as Figure 3. 1.
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Figure 3.1 Funicular Diagram for a Difference Segment of a Rod

In a form consistent with mobility procedures, the above currents can be

expressed as functions of velocities as

AE AE v .
A_x (un+1 h un) T Ax f(un+1 h un) dt (3.5)
AE AE . .
Ax (un - un-l) T Ax [(un B un-l) dt (3.6)
o d .
mAxu = mdx—(u ) (3.7)
n dt " n

The first two equations denote current flow through inductors whereas the
last equation describes the current flow of a capacitor. Therefore, the
mobility circuit for the longitudinal vibration of a difference segment of rod

becomes the LC network shown as Figure 3. 2.
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Figur‘e 3.2 Mobility Circuit for the Longitudinal Vibration of a Rod

Interpreted as a lumped model, the mobility circuit describes a system
of undamped linear oscillators connected in tandem. The nodal voltages ‘
denote the velocities at the spatial locations and the current flows denote ex-
tensional forces and inertial forces. The circuit components are related to

the mechanical parameters as

Ax
L, " ig
n
Ax
Ln—l T AE
n-1
C = mAx'
n n

where the subscripts below the vertical line refer to the difference segment
over which each of the mechanical quantities are to be evaluated. For the nth
inductor (Ln)’ the flexibility distribution of the rod is integrated from spatial
position n to n+ 1. For the nth capacitor (Cn), however, the mass distribution

of the rod is integrated from spatial position n - % to n + %
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Although sketched as equal difference lengths, the difference segments
can vary in length while the form of the circuit remains unchanged. For a
rod with nonuniform mass and flexibility properties, the form of the mobility
circuit likewise does not change. The circuit component values are calculated
by integrating the nonuniform properties over the appropriate segmental lengths

thus representing the nonuniform rod by "weighted' uniform sections.

3.2 LATERAL VIBRATION OF A SIMPLE BEAM

The section of beam to be treated here is assumed uniform, homogeneous,
and to obey small deflection theory. Although uniform beam properties are
assumed for the analog derivation, the form of the analog circuit will be the
same for nonuniform properties

Consider a differential length of a simple beam in bending {(also common-

ly called the Bernoulli-Euler beam) shown as Figure 3.3,

f(x, t)

M
M \M%-ghdx
( T mdx y x
v

Figure 3.3 Differential Segment of a Simple Beam

where M denotes the bending moment, V the shear, f(x,t) the external

loading per unit segmental length, and mYy dx the inertial loading
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acting at the center of gravity of the differential segment. The equation of

motion for this beam is given by

o]
=1
QU
<
',‘
[s¥]
o
[

(x, t) (3.11)

N
N

where E is Young's modulus, I the cross-secuun area moment of inertia
about the bending axis, f(x,t) the external lateral loading per unit length,
m the mass per unit length, t the time, x the position along the length of
the beam, and y the lateral deflcction from static equilibrium noted as
a function of both the spatial coordinate x andtime t.

The derivation of this fourth-order partial differential equation is

based upon four, first-order differential expressions which may be written

as
_dy
(a) 8= dx
de
(b) M= Elqo (3.12)
dM
(c) VEu
a® oV
(d) m—-;_i = my = — +f(x,t)
dat ox

where 0 is noted as the slope in bending. As first-order difference expres-

sions, these equations become

:Ax(yn) Yn+]. -y

a 5] - n
() it 1 — .
El EI
(b M = M = = - == _
) n n+3 ,n-% AxAx(en) Ax Capl =8 1) (3. 13)
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_ Ax(M)n+% 1

- = - t—_—— = — (M - M
() Vn Vn+l, n Ax Ax ( n+% ) n+% n+%, n—%)
(¥ )
/ = - = A - fA
(d)AX(Vn) n+l,n n,n-1 mn XYn n X

where Mrl is the moment in the beam segment at position n and corresponds
to moment flow from position n+% to n-%, Vn the shear force in the nth
beam segment and corresponds to shear flow from position nt+l to n, fn the
external loading per unit length acting on the nth beam segment, m the
mass per unit length for the difference segment centered at position n,en+%
the slope of the beam segment at position n+3, Ax the difference length of
a beam segment, Ax( ) the change of the quantity ( ) with respect to the
x coordinate. Electrically, these equations are simulated by the difference
circuits of Figure 3. 4.

Defining a composite difference gridwork, the circuits in Figure 3. 4
are combined to yield the general symbolic circuit shown as Figure 3.5,
Note that the slope coordinates are shown at positions intermed:iate to the
deflection coordinates. The bending moment Mn is defined as the moment
in the beam from spatial position n+% to n—% while the shear force Vn is
defined as the shear flow in the beam from spatial position n+l to n-1. The
bending moment corresponds to the current measured in the 0 slope circuit
and the shear flow corresponds to the current measured in the y deflection
circuit. The transformer windings couple the slope and deflection circuits
and are shown using conventional primary Pn and secondary Srl notation. The
primary winding is located in the deflection circuit and, with the secondary
winding set to unity, corresponds numerically to the beam segmental length
defined from spatial position n to n+l. The inertial loading is shown as
the impedance Zn while the bending flexibility is noted as the impedance
zn(e). Consistent with the positive sign convention, the external load on the
nth difference segment anX is shown as a current generator directed into

the nth node of the deflection circuit.
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Figure 3.4 Circuit Representations for the

Difference Equations of a Simple Beam
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Figure 3.5 General Mobility Circuit for the Lateral Vibration
of a Simple Beam

From the circuits of Figure 3.5, consider the development of an analog
depicting the bending of a simple beam due to an external static load. Consis-
tent with the mobility approach, the required analog is a force-current,
displacement-voltage circuit and differs from a mobility analog only in the
definition of the mechanical equivalence of voltage. Such a circuit for the
static bending of a beam is appropriately called a static analog and appears

as Figure 3. 6.
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Figure 3.6 Static Passive Analog for a Simple Beam in Bending

Since there is no inertial load, the inertial capacitor Zn does not
appear. The bending impedance Zn(B) is noted as a resistor and all other
parts of the circuit remains unchanged. The magnitude of the nth bending
resistor is obtained by integrating the beam flexibility distribution from
spatial position n-3% to n+: whereas the nth transformer winding ratio is

the length of difference segment from position n to n+l. The current
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generator corresponds to the applied static loading lumped at the deflection

coordinates.

For example, the magnitude of the loading at the nth position

is found by integrating the distribution of the external load from n-3 to n+3.

From the general circuit of Figure 3.5, a mobility circuit for the

vibration of a simple beam is shown as Figure 3.7.
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Figure 3.7 Mobility Analog for

the Lateral Vibration of a Simple Beam
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Consistent with mobility relationships, the currents correspond to shear force
and bending moments whereas the nodal voltages correspond to slope and
lateral velocities. This analog is equivalent to a finite-difference mathematical
model of the simple beam and is sometimes called a difference mobility circuit.
The circuit components are expressed in terms of their mechanical equivalents
where the flexibility appears as an inductor (shown symbolically as a resistor),
the inertial loading as a capacitor, and the slope geometry as a transformer
coupling the deflection circuit with the slope circuit. The magnitude of the
bending inductor is obtained by integrating the flexibility distribution from
position n-3 to n+3 Likewise, the capacitor and current generator magni-
tudes are calculated by integ:iating the mass and external loading distributions
over the segmental length between position n-3 and n+3.

Constructed as a mechanical model, the mobility difference circuit

shown in Figure 3.7 (without the external loading) is depicted as Figure 3. 8.
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Figure 3.8 Equivalent Mechanical Model for the Mobility
Analog of a Simple Beam Segment
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Note the topological similarity with the circuit. The transformers are
sketched as the levers while the bending inductor Ln(e) and inertial capacitor
Cn appear as the spring kn(e) and concentrated mass mAxIn respectively.

By comparing the static circuits of Figure 3.6 with the mobility circuit
of Figure 3.7, the form of the two circuits are identical. To convert the
static circuit to the mobility circuit, the nodal voltages are first assumed as
slope and lateral velocities. Then, an inertial capacitor Cn is added to the
nth mode in the deflection circuit and the bending resistor Rn(e) is converted
to a bending inductor Ln(e). Since the transformers describe the slope
geometry, they remain unchanged. In a similar manner, most dynamic
analogs for structures can be conveniently derived from their static circuits.
This conversion requires that the resistors be changed to inductors and
capacitors added to the appropriate nodes to account for inertial loacdicgs.

The mobility analog shown here has the accuracy limitations of finite-
difference equations. For accuracy improvement, the use of higher order
difference methods can be used as is discussed for beam analysis by
Greenwood in Reference 9.. As contrasted to passive analogs, however,
Greenwood uses active or operational amplifier circuits.

Other beam circuits also are available in the literature. One very
useful mobility circuit is the Russell beam analogy discussed by Russell and
MacNeal in Reference 17 and again by MacNeal in Reference 13. In contrast
with the mobility circuits emphasized in this discussion, a mechanical im-
pedance circuit (force-voltage, velocity-current analogy) for the beam is

discussed by Molloy in Reference 14 as a four-pole-parameter network.
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3.3 LATERAL VIBRATION OF A TIMOSHENKO BEAM

This beam may be described as the simple beam in bending plus the
effects of both rotary inertia and shear deformation. If the shear deforma-
tion is ignored in a Timoshenko beam, the resultant structure is called
the Rayleigh beam. Pictorially, a differential segment of the Timoshenko

beam is shown as Figure 3.9

f(x, t)
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+——
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Figure 3.9 Differential Segment of Timoshenko Beam

where M denotes the bending moment, V the shear force, f(x,t) the external
loading per unit length, my dx the lateral inertial force of the differential

segment, and I 8 dx the rotatory inertial force of the differential segment.

0
The equations of motion for this beam may be written as

oy . 3
y=—2=—=|18-E12Y
ox GK'|'® A

(3.14)

o%y o [ .
my + EI—}:- 7o 18] fx, )
ox
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where A is the cross-section area, E the Young's modulus, I the cross-
section area moment of inertia about the bending axis, IG the mass moment
of inertia about the bending axis, G the shear modulus, K' a geometric
correction factor noted as the ratio of average shear stress to maximum
shear stress over a cross section, m the mass per unit length, y the total
beam deflection from the static equilibrium position, vy, the beam deflection
due to bending, Y the beam deflection due to shear deformation, 6 the
slope due to bending, and (”) the second time derivative of the function
within the parentheses.

The derivation of the equations in (3. 14) is based upon the following

first-order differential equations.

.. aV

(a) my = =+ £(x, t)

(b) 196 =V + %—I;’I

(c) 6 = Ed (vy,)

(d) M = Elj—i (3.15)
(e) =22

0 v=5=0,) = 7rg

(g) Y=yt Yy

The first two equations (a, b) are derived from force equilibrium conditions,
the next three equations (c, d, e) are applicable statements from simple beam
theory, the sixth equation (f) is obtained from elementary strength of materials,

and the last equation (g) is a geometric definition.
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As finite-difference expressions, the above equations appear as

(a) m_Ax ?n = AX(V)n +1 Ax

(b) I BAX§n+% =V Ax+ Ax“M)n#

(c) LN —A 5,

(@) oM =—=A e (3.16)
\

(e) v, =ax b,

() Ay =gV,

(g) A=A+ A )

The first two equations are electrically satisfied by Kirchhoff's current
law, equations ¢, d, and 3 are shown in Figure 3. 4, and equation { is
electrically satisfied by Ohm's law. Both the f and g equations are

simulated by the circuit shown as Figure 3. 10. CrR- S,0
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Figure 3. 10 General Difference Circuit for Shear Deformation
and Total Deflection

By applying Ohm's law where Ax(ys) denotes the voltage drop and Vrl the
current, the shear impedances Zn(V) acount for the deflection due to shear
deformation given by Eq. (316-f). By adding the positive voltage drops Ax(ys)
and Ax(yb), the total voltage drop Ax(yn) is obtained as specified by Eq. (3. 16-g).
By expressing the lateral and rotational accelerations as well as the
slope and displacement coordinates in terms of angular and lateral velocities,
a passive mobility circuit for the lateral vibration of a segment of Timoshenko
beam appears in Figure 3. 11. The difference between this circuit and that of
a simple beam is the addition of (1) the rotatory inertial capacitors C(8) in the
slope circuit and (2) the shear deformation inductors L(V) and L'(V) in the
lateral velocity circuit. Shorting the shear deformation inductors from the

above circuit yields the mobility circuit for a Rayleigh beam. The magnitude
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Figure 3.11. Mobility Circuit for the Lateral Vibration of Timoshenko Beam
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of the rotatory inertial capacitor for the nth beam segment C (8) is obtained
n
by integrating the distribution of the mass moment of inertia from spatial

position n to ntl. The magnitudes of Ln(V) and L;l(V) are calculated by

1 . o
integrating the distribution of RAG from spatial position n to n+% for

L (V) and from n+§ to n+l for LI;(V).
n

3.4 LATERAL VIBRATION OF A SIMPLE BEAM ON
AN ELASTIC FOUNDATION

The structure considered here is the simple or Bernoulli- Euler beam
on a distributed, elastic foundation. The remarks of this discussion, however,
are equally appropriate to a beam defined by Timoshenko beam theory.

For a differential segment of a beam, the elastic foundation is assumed

equivalent to an elastic spring attached below the center of gravity of the

beam segment. The equation of motion is expressed as

4
0
EI——}-;+m§—2y+Kfy=f(x, £) (3.17)
ox ot
where the symbols are those for the simple beam with the additional term
Kf denoting the foundation stiffness per unit length. This fourth-order
equation is based on four first-order differential equations which are

expressed in finite-difference form as

(o) i AX(Yn)
* en—l—%_ Ax
EI
®) M, a Byley)
AX(M)H+% (3.18)
() _Vn+1, n = Vn - Axn
(d) Ax(v)n: mAx'}.fn + Kfoyn - anx
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Except for the term in the d equation denoting the force due to the elastic
foundation, these equations are the same as those for the simple beam.

By applying Kirchhoff's current law at the nth node, the foundation force
is incorporated into the simple beam analogy and vields the mobility analog

of Figure 3. 12.
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Figure 3. 12 Mobility Circuit for the Lateral Vibration of a Simple Beam
on an Elastic Foundation
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The elastic foundation is shown electrically as an inductor Ln(Kf) to ground
and is inserted in parallel with the lateral inertial capacitor Cn .  The
magnitude of the foundation inductor for the nth segment is obtained by
integrating the distribution of the foundation flexibility from spatial position

1
n-3 to n+%.

3.5 IN-PLANE VIBRATION OF A CURVED BEAM

The structure considered here is a curved beam loaded externally in
the radial direction by the force fr(q), t). The beam theory is essentially
that for a curved simple beam. A differential section of a curved beam with
the external loading, internal force, and displacement coordinates is shown

as Figure 3.13:
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Figure 3. 13 Curved Beam Segment with the External Loading, Internal
Forces and Displacement Coordinates
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where ¥  is the shear force acting in the radial direction, F, the exten-
r

$

sional or tangential force acting in the angular coordinate ¢ direction,
fr(é, t) the external radial loading per unit arc length, M the bending
moment, f¢(¢, t) the external tangential loading per unit arc length, m the
mass per unit arc length, r the radius of the curved segment, u the

L

axial displacement measured in the ¢ direction, v the radial displacement

measured in the r direction, 6 the slope of the beam, ¢ the angular
coordinate, and ( ) the second time derivative of the quantity ( ).
Consistent with the format of the previous derivations, the first-order

differential equations for this beam segment are

Except for notational changes and the radial inertial force, these equations

are found in Reference 12.

dF
(a) d¢r= F¢—frr+mrv

dF
(b) —® . F -fr

dér r ¢

dM
{c) d—¢— = —Frr

(3.19)

de ‘
@ R
(e) % =u + 6r

d
(£) d—; = -v
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Expressed as first-order difference equations, the equations of (3. 19) appear

as

(a) Ad)(Fr)n = (F, - f +mr¥) 8
(b) By®y, = -(F v 1) 8¢
(c) A, 1= -F rao
(3.20)
_ Iae
(d) Ao =5 M,
(e) A(b(vn) = (u_+6r) Ao
(£) A¢(un) = -vnA¢

The first three equations are obtained from force equilibrium conditions
and are simulated electrically by applying Kirchhoff's current law at
appropriate nodes. The fourth equation is determined from stress-strain
conditions and is simulated electrically by applying Ohm's law in the slope
circuit. The last two equations are obtained from strain-displacement
conditions and are simulated by ideal transformers.

Defining a conventional difference gridwork, a mobility circuit for
the in-plane vibration of a curved beam is shown as Figure 3.14. The
magnitude of the bending inductor is calculated by integrating the bending
flexibility distribution over the arc length from angular position ¢ 1 to
¢n+% Similarly, the magnitude of the radial inertial capacitor is ot;atained
by integrating the mass distribution over the same angular positions.
Setting the Sn winding equal to unity, the Pn winding corresponds to the
difference arc length for the nth beam segment, whereas the remaining

transformers denote the magnitude of the ¢ angle.
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Figure 3. 14 Mobility Analog for the In-plane Vibration of a Curved Beam
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Deleting the primed transformers reduces the curved beam circuits to those
for the lateral vibration of a simple beam. Thus, these transformers
account for the geometry change necessary to convert a straight beam seg-
ment into a curved beam segment and is shown to couple the radial (v} and
tangential (u) motions.

By making use of the previous derivations, the basic circuit of
Figure 3. 14 can be intuitively altered to include additional effects. As an
example, rotatory inertia and shear deformation are accounted for in the
Timoshenko beam circuit by the inertial capacitor Cn(B) and the shear
inductors Ln(V) and L;l(V). These effects are included in the curved beam
by adding a rotatory inertial capacitor Cn(e) to the slope circuit at n +3and
adding (in series) the shear inductors Ln(V) and Lr‘l(V) to either side of the

Pn winding in the v circuit.

3.6 RECTANGULAR SHEAR PANEL

A shear panel is a two-dimensional structure capable of resisting
shear forces applied to its edges. A differential segment of a rectangular
shear panel with the shear forces, the accompanying displacements, and
coordinate directions is shown as Figure 3. 15. This sketch depicts u and
u' as the deflection components in the x direction, v and v' the deflection
components in the y direction, Fyx the shear force perpendicular to the
y axis and in the x direction, and FX the shear force perpendicular to

the x axis and in the y direction. From force equilibrium conditions

F dx = F_dy (3.21)
Xy yX

76



— ,lr
F
y : Xy

1 DOy

= u ?——’ a' dy

Xy

\'
—————a—-
A

F
yx

Figure 3. 15 Differential Segment of a Rectangular Shear Panel

From stress-strain considerations, the shear flow appears as

F !a A
_yx _ ou ov
dx th dy * Bx) (3.22)

where (G is the shear modulus and h the panel thickness. As first-order

difference equations, the above differential equations become

F Ax = F Ay

xy yx
F (3.23)
yx Gh{AY(u) . Ax(v)}
Ax Ay Ax

where the lower equation describes a coupling of mutually perpendicular
motions.
Consistent with the mobility approach, the equations of (3.23) are

expressed in terms of force and velocity as

11




(3.24)

~ GhAax .y, Ay .
S /{Ay(u)+Ax Ax(v)} dt

Defining a two-dimensional rectangular difference grid, these equations are

simulated in the circuit shown as Figure 3. 16,

A
< " .

o
1T
| . 1 S |
: yx + |

o e S
o - N “J&EMT“I'“ Ay
: Y %L(s) I
|
L_.__._..J.~______J X
v
A P Ax
T

Figure 3.16 Mobility Circuit for a Rectangular Shear Panel

The transformer serves to couple the 4 and v motions and the shear
inductor L{s) accounts for the shear strain energy of the panel. If the
inertial forces of the panel were included, capacitors would be added to

the @ and v nodes.

78




3.7 LATERAL VIBRATION OF A FLAT, RECTANGULAR PLATE

As contrasted to a one-dimensional structure such as a beam, the plate
considered here is a two-dimensional elastic structure assumed as homo-
geneous, uniform, and to obey small deflection theory. Although the plate
physical properties are assumed uniform, the circuits to be derived are
equally appropriate for nonuniform properties.

A differential section of a laterally loaded plate with the accompanying
moments and shear forces is sketched as Figure 3. 17. The force notation
shows M as the bending moments per unit length, Q the shear forces per
unit length, and f(x,y,t) the external loading per unit area. The differential
segment is of thickness h and has the differential dimensions dx and dy.
From the content of Chapter 4 in Reference 19, the equation of motion for

the lateral vibration of a flat rectangular plate can be expressed as
4 (Ld
DV (w) + mW = f(x,y,t) = f (3. 25)

where m is the mass per unit area, w the lateral deflection from the static
equilibrium position, v the Poisson's ratio, and (°°) the second time

derivative of the quantity ( )

3
D = plate flexural rigidity = __E}l__z_
12(1-v)
4 4 4
vi-2 .8 _, 8
Co 4 2 2 4

The loading is assumed normal to the surface and the deflections are small

in comparison with the plate thickness. The effect on bending due to the

shearing forces Qx and Q@ and the compressive stress in the lateral direc-
y

tion due to the external loading are both neglected.
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Figure 3.17 Differential Segment of Rectangular Plate and the Associated
Forces |

80




The equation of motion for the plate is derived from the following

differential equations

an BQY
+ —2 +f-m=
(a) . By f-mw=20
BMYX BMXX
b + - =0
(b) ay Iox Qx
aMxy BMyy
- +L. =
(c) ox oy [Qy 0
2 2
0w o w
(d) Mxx = -D{——Z— + v 3
0x oy
(3.26)
2 2
(e) M = -D{a—% vy 8 WZ}
vy oy x
(£) M. = M__=D(-v) f“:
=y ¥~ CAE LY
dw
(g) 8 " =
dw
(h) 0 = —
y dy

The first three equations (a2, b, andc) are obtained from equilibrium con-
ditions, the next three moment equations (d, e, and {) from stress-strain
relationships, and the last two equations (g and h) from strain-displacement
definitions.

In finite-difference form without the spatial position notation, the above

equations appear as
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A o) ) A

(a) ~x Ay +f-mw =0
M
" Ao ) +AX( o o -0
Ay Ax
Ay A
X Xy Y Yy _
(c) A - Ay + QY =0
G A (6
_ X X Yy ¥y
(d) Mx_x =D Ax v Ay }
Ao Ao .27
(e) Myy = -D{ Ay +v "
A )
_ _ X Yy
(£) —Mxy— MYX = D(1 -v) ———
A (w)
(g) ex - AX
Ay(w>
h 6 = ——
(h) v ay

Expressing the coordinate motions as velocities, the mobility analog for the
flat rectangular plate is obtained by electrically simulating the above equa-
tions and appears as Figures 3.18.

These circuits are shown as three distinct sets: (1) the lateral
velocity circuit w, (2) the slope circuit Bx for bending of the x axis, and
(3) the slope circuit SY for bending of the y axis. The gridwork displays
four difference rectangular plate segments where the incremental distance
between consecutive numbers is one-half of a difference length. Although
the nodes in the w circuit are defined at odd-odd coordinate lncations, the

nodes in the slope circuits occur at odd-even coordinate positions.
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Figure 3. 18-a w Circuit for the Lateral Vibration of a Flat
Rectangular Plate
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1

Figure 3. 18-b éx Circuit for the Lateral Vibration of a Flat

Rectangular Plate
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Figure 3. 18-c

GY Circuit for the Lateral Vibration of a Flat

Rectangular Plate
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Figure 3. 18-d Component Values for the Rectangular Plate Circuits
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The currents are shown in terms of their mechanical equivalents and
correspond to the shear forces and moments in the difference segments.
The Ll and LZ inductors account for the strain energy in bending, the L3
inductor for the torsional strain energy, the capacitor for the kinetic energy
of a plate segment, and the trainsformers for the plate geometry.

Figures (3. 18) represent the flat plate as a rectangular array of simple
beams constrained in bending by interlocking torsion members. The w cir-
cuits are those for a two-dimensional rectangular gridwork of simple beams
in bending. The slope circuits, however, differ from those corresponding
to simple beams in bending due to (l) Poisson coupling terms relating the
M and Myy bending moments, and (2) the torsional restraint due to the

X2

M\'Y and M « twisting moments. The Poisson coupling is represented by
the transformers number three and four and the torsional restraint by
transformer number five.

By way of review, consider the simulation of the torsional restraint.
From the éx circuit in Figure 3. 18-b, the voltage across the L3 inductor is

L -A(e)+—A( (3. 28)

AE|
3

Substituting the mechanical equivalent of the transformer ratio yields

. AY ’
SE L - Ay(ex) Y Ax(ey) (3. 29)
3

By adding the equations given as (3. 27-f), the sum of the twisting moments

becomes

M +M = D“"') {A (e )+ LA, © )}dt (3. 30)
T xy yx
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Consistent with mobility procedures, the twisting moments are assumed as
currents and the voltage is shown as the equation of (3.29). By imposing
Ohm's law, the form of Eq. (3. 30) is that for current flow through the
inductor

Ay

Ly = Bia-w

(3. 31)

where L3 is noted as the torsional inductor.

The mechanical equivalents of the circuit components for an arbitrary
plate segment are shown as Figure 3. 18-d. The inertial capacitor C, the
bending inductors L1 and L2 , and the bending transformers (numbers one,
two, three, and four) are referenced to the plate segment centered at the

grid position 3,3. The torsional coupling inductor L, and the coupling

3
transformer (number 5) are referenced to the cross-hatched plate segment.

3.8 SCALE FACTORS

To use the analog circuits shown here on a passive element computer,
scale factors often must be considered to obtain electrical values compatible
with available setting values for the circuit components. As shown, the
circuit components for the analog circuits are given only in terms of their
mechanical equivalents or, in other words, the scale factors are assumed
as unity. Scale factors, therefore, are introduced so that the mechanical
quantities can be conveniently adjusted to the available setting values on the
computer. These factors are constants which relate the magnitude of the
quantities in the mechanical system with the corresponding quantity in the
electrical system.

Requiring the power in the analog circuits to be equal to the energy
of the mechanical system yields the scale factor relationships shown as
Figure 3.19. These factors are derived in a general way by MacNeal in

Section 3.3 of Reference 13. The scaling constants are normally selected
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FORCES

i
I
I
K i F = mechanical force
F=-1
a | .
l Me = bending moment
kP | < s
9 T_ = torque or twisting moment
Me = Ie | 8
a i .
I I = current corresponding to F
T, = kpd) 1 ! 1 = t ding to M
6 ° a b : g = current corresponding to 6
| I¢ = current corresponding to T¢
|
t
1
COORDINATE MOTION
i
ka ' .
w o= =~ S : w = lateral or linear velocity
W .
- Ka .. : f? = slope velocity
B NP, "0 | ¢ = angular (twisting) velocity
: trn = real or mechanical time
. ka
= NP(i> e : es = voltage corresponding to w
t = Nt : eg = voltage corresponding to )
m e
| _ . .
| ea) = voltage corresponding to ¢
I
| k,a, Pe, P ,N= scaling constants to be
! ¢ selected
I
|

te = electrical time

Figure 3.19 General Scale Factor Relationships for Mobility Analogs
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such that the capacitor setting range from . 050 microfarads (ufd) to . 900
microfarads, inductor settings from . 050 henries (h) to 1 henry, resistor
settings from 100 ohms (2) to 10,000, 000 ohms. The time scale factor N
is selected such that the electrical frequency range for the specific problem
extends from 80 cycles per second (cps) to approximately 800 cycles per
second.

Consider an application of these scale factors to determine the scaled
magnitude of the circuit components for the lateral vibration of a simple

beam. The lateral inertial force of a beam segment may be expressed as

a4
Fo = m Ax dty (3.32)

m

where tm is noted as mechanical time. Substituting the force, lateral veloc-

ity, and time scale factors from Figure 3. 19 into the above expression

aZ de,
-2 y
If == mnAx En . (3.33)
N e
where If denotes the current corresponding to the inertial force F.. This

equation corresponds in form to current flow through a capacitor of magnitude
c =2 A 3.34
= —3 m_Ox (3.34)

In a similar manner, the bending inductor and transformer ratio are calcu-

lated and shown to equal

2
P
0 Ax
Ln(e) =\ —E_ﬁ (3.35)
n

Pn Axn
S—: 5 (3.36)

n 0
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As an additional example, consider the calculation of the shear defor-
mation inductors Ln(V) in the Timoshenko beam circuits. The relationship

betwecn the shear force and the deformation due to shear is given by Eq. (3. 16-f)

V. wae ~A v =A (fy dt> (3.37)

Substituting the shear, lateral velocity, and time scale factors into the above

as

difference expression provides

I = a® K'AG A (f ) (3. 38)
v y e

where IV denotes the current corresponding to the shear force V . This
n

equation corresponds in form to current flow through an inductor of magnitude

1 Ax
Ln(V) ———;-2 m (3.39)

Note that the Ax in the above expression is twice the difference length of
the shear inductors shown in Figure 3.11. Thus, the sum of the inductors

in the Timoshenko beam circuit equals the magnitude given by Eq. (3.39).

3.9 BOUNDARY CONDITIONS

The mobility circuits derived in this discussion are electrical models
of difference segments for specific distributed elastic systems. These
circuits are elemental building blocks to be used in synthesizing complete
structural systems. In constructing a complete electrical model, the
boundary conditions of the original system must be accounted for electrically.
Several beam problems will be considered to illustrate the handling of

typical boundary conditions.
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Consider a six-segment representation of a cantilever beam described

by simple beam theory. The basic circuit for a segment of simple beam is
shown as Figure 3.7. Interconnecting six such circuits (without the lateral
loading) in tandem yields the analog circuit shown as Figure 3.20.

The electrical network is a mobility analog, thus, the voltages and
currents in the slope circuit écorrespond to the slope velocities and bend-
ing moments respectively; and, the voltages and currents in the lateral
motion circuit y correspond to lateral velocities and shear forces respec-
tively. The circuit components and their mechanical equivalents for the nth
segment are shown: the capacitor Cn corresponds to the lumped mass
mn, the inductor Ln(G) to the spring kn(G), and the nth transformer to the
rigid lever labeled as Axn. The beam grid defines the lateral motion nodes
as even digits and the slope nodes as odd digits. Therefore, the difference
between any two odd or any two even positions is the difference segment
Ax.

The boundary conditions for a cantilever beam are expressed as
y(0, t) = 0

(% 8 _ g0, ¢ = 0
ox

(3.40)

It
(@}

2
pr ALY Ly, b
0x

3
8 y(4,thy
EI 3 = V(lr t)
ox

1l
o

where the fixed or built-in end condition (x=0) allows no lateral deflection
nor slope andthe free end (x=£) can carry no shear force nor bending mo-

ment. No lateral nor slope motion at the built-in end is equivalent to
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zero voltage at the appropriate nodes in the lateral motion and slope cir-
cuits. This is accomplished electrically by grounding the nodes at the
spatial location corresponding to x = 0. No bending moment nor shear at
the free end is equivalent to zero current flow out of the appropriate nodes
in the ¢ and 6 circuits. Tﬁis is done electrically by opening the circuit
at the spatial positions shownas 11 and 12.

Instead of the fixed boundary conditions at x = 0, suppose the cantilever
beam was attached to a flexible boundary allowing both lateral and bending
motions at the root. This is accounted for electrically by inserting inductors
Le and LY to ground in both the y and 6 circuits at the x = 0 spatial location
as depicted in Figure 3.21. The magnitudes of these inductors depend upon
the amount of flexibility in the boundaries. Setting the inductors to zero
(shorting them from the circuit) reduces the flexible boundaries to an infinite
stiffness or the original rigid boundary conditions for the fixed end of a

cantilever beam.

zL_(0)

0 2

Figure 3.21 Flexible Boundary for the Built-in End
Condition of a Cantilever Beam
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Consider the six-segment simulation of the partially loaded beam
structure shown as Figure 3.22. Simple beam theory is assumed adequate
to describe the structure. The boundary conditions are those of a cantilever
beam with an intermediate support at the center span. Thus, the analog
simulation of the end conditions are identical with those shown in Figure 3.20.
The intermediate support allows no deflection and requires continuity in the
bending moment and slope at the mid span. These are simulated electrically
by grounding only the ).r circuit at the node corresponding to spatial posi-
tion 6. The inertial capacitor is shorted from the circuit at this position
and is not shown. The current generators correspond to the external load-

ing lumped at nodal positions 8, 10, and 12.

f(x, t)
Physical System //

Electrical Analog

+I +* ¥ + 7+ ¥
‘ v 3 ©/T

Figure 3.22 Mobility Analog of a Partially Loaded Distributed Beam
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4, OTHER PHYSICAL SYSTEMS

Passive analog concepts are generally applicable for most any physical
system described as a function of both space and time, i.e., a partial
differential cquation. Although various electrical analogs were considered
in the previous sections, mobility circuits were emphasized for simulating
the vibration of lincar elastic structures. In this section, mobility-oriented

circuits are considered for physical systems other than elastic structures.

4.1 VISCOELASTIC MODEL

For some problems, the properties associated with a viscoelastic
material such as solid propellant can be described as a complex stiffness
where the force-displacement relationship is

'

F :KO(I + 1P)x (4.1)

Expressed in terms of the velocity, the above equation becomes

, .
F:K'(1+i¢)f;<dt:K—“—,ii@5< (4.2)
0 iw
Consistent with mobility procedure, the impedance appears as
e iw iw wd
Z === - = == + (4.3)
1 Y 2 2
SR S RO Ki(1+8°)

where force is assumed analogous to current and velocity analogous to voltage.
By Ohm's law, Equation (4. 3) is electrically equivalent to the combined
impedance of an inductor in series with a resistor shown as Figure 4.1. The
mechanical equivalents of the inductor and resistor are found by writing the

impedance for the RL series combination and comparing the resulting terms

with Eq. (4.3).
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Figure 4.1 Mobility Circuit for a Viscoelastic Spring

This simple mobility circuit can be used in conjunction with known
analogs of elastic structures to create models of viscoelastic structures.
For example, to create an analog depicting the lateral motion of a visco-
elastic beam, the RL series combination is substituted for the bending
inductor Ln(e) in Figure 3.7. For an analog model depicting the vibration
of an elastic beam on a viscoelastic foundation, the RL series combination
is substituted for the elastic foundation inductor Ln(Kf) in Figure 3.12 .

Other viscoelastic models can be created by similar substitutions.

4.2 HEAT TRANSFER OF A CYLINDRICAL ROD

Consider the derivation of an analog circuit depicting the temperature
characteristics of a homogeneous cylindrical section of rod. As discussed
by Pipes in Section 14 of Reference 16, equating the loss of heat energy in a

volume of material to the heat flow from the volumetric surface yields

__gt_fﬂcpTdV:ffa-ads (4.4)

where S is the surface of the body, T the temperature of the body, V the
volume of the body, c the specific heat of the material, n the vector>normal
to the cylindrical surface, q the vector denoting the heat flow, p the density

of the body per unit volume, and t the time.
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Expressing this equation as a volumetric integral provides

fff Cp%%‘i'va av = 0 (4. 5)

where Gauss' theorem is used to transform the surface integral and v is
the dell operator common to vector analysis.
Since the volume is finite and the integral is continuous, the integrand

of Eq. (4.5) can vanish only if

dT -
cp‘a?+vq=0 (4.6)

In expanded form, Eq. (4.6) appears as the diffusion equation for heat flow

{1

dT 2
—_— .7
cpr=k\V'T (4.7)
where the heat flow is given by
q=-k VT (4. 8)

and k is the thermal conductivity. For cylindrical coordinates, the square

of the dell operator is expressed as

2 2
e (4.9)
R® 96° oz

o |®
e

2 1 o
V' =r3x (R

Substituting the above equation into (4. 7) yields the heat flow equation for a

cylindrical section

2

H

2
E_P.Q:_l_a_ 9T 1 9T T+8 (4.10)
k dt R 3R oR 2 2 2

e

09 0z




Assuming the temperature to be independent of the angular coordinate

9, Eq. (4.10) reduces to the two-dimensional heat flow equation

2

aT 19 oT\ 9°T
2okl 2 i 4.11
“P & {R aR (R BR) azz} { )

Expressed as a finite-difference equation for a difference volume of the

material, the two-dimensional heat flow equation appears as

dTn krAz
cpr AT Az dt - Ar {(Tn+l - Tn) - (Tn - Tn-l)}r

(4. 12)
kr Ar
* Az {(Tn+l - Tn) - (Tn B Tn—l)}s

where subscripts below the braces denote the coordinate directions and
AB is assumed as one radian.

Defining a r-z rectangular grid, a difterence RC network simulating
Eq. (4.12) is shown as Figure 4.2. Consistent with the mobility approach,
the temperature is proportional to voltage and the heat flow proportional to
the current. The capacitor denotes the heat capacity of the material and the
resistor the thermal resistivity in the radial and axial directions. A heat
or cooling source would be represented as a current generator connected
to the appropriate temperature node. Similar analogs for heat transfer are
discussed in greater depth by Karplus and Soroka in Chapter 10 of Refer-

ence 11.
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Figure 4.2 Analog Difference Network for Two-dimensional Heat Flow in

Cylindrical Coordinates
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4.3 THERMAL CHARACTERISTICS OF FLUID FLOW IN A DUCT

Consider the derivation of an electrical analog depicting the thermal
characteristics of fluid flow through a duct. The quantities to be considered

in this representation are shown in Figure 4. 3.

| dx . Cros s;ec‘ti/on of Duct Wall
WAV AV A A AV AVA AN AAN T4

Flow —» - - » X

2
3

q' q
Figure 4.3 Sketch Depicting Thermal and Fluid Flow Through a
Section of Duct

In this sketch, q denotes the heat flow into the fluid by conduction through
the duct wall, q' the heat flow into the fluid from sources other than the
surrounding body (such as internal friction or radiation), and x a spatial
location along the flow path.

The differential equation describing the fluid temperature as a function

of time and spatial position may be expressed as

— {1 8T aT
wecl—= —+ =—}]=q+q 4.
cl= PY: + 3 q+tq' {4.13)

1

where T is the temperature of the fluid, ¢ the specific heat of the fluid at
constant pressure, t the time, Vv the velocity of the fluid, and W the mass
flow rate of the fluid. Quantities such as the temperature and velocity are

assumed constant over the duct cross-section at any instant. Although such
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quantities may vary over the cross-section, mean values are multiplied by
the cross-section area to yield correct values of mass flow and heat flow
of the fluid. The heat flow q into the fluid due to a temperature difference

between the fluid and the duct wall appears as

q = sk(T, - T) (4.14)

where Td is the temperature of the ambient surrounding such as the duct
wall, k the surface conductivity coefficient between the fluid and the
ambient surroundings, and s the perimeter of the duct cross-section.
Substituting (4.14) into (4.13) and expressing the resultant equation in finite-
difference form yields
AXW ¢ n

— — +wc (T - T
v dt WC(U+%

y- Q' = skAx(Td— T ) (4.15)

n- n

=

An analog circuit electrically simulating this difference equation is shown

as Figure 4. 4.
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1
R = 2%®c
1
Rd T skAx

Figure 4.4 Difference Circuit Depicting Heat Flow and
Fluid Flow Through a Duct

The current is analogous to heat flow, the nodal voltages to the duct
and fluid temperatures, the capacitor to the heat capacity of the fluid, the
resistors R and Rd to the thermal resistivity of the fluid and duct wall
respectively. The capital Q and Q' symbols denote the heat flows by
conduction and external sources for the difference length Ax. A thorough

discussion of this topic area is given by Dixon in Reference 6.
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5. CONCLUDING REMARKS

The distinction between structural vibration problems and the topics
of Section 4 should be clearly understood. Vibration of the simpler elastic
structures is categorized mathematically as a type of wave equation whereas
problems common to heat transfer and fluid flow are categorized mathe-
matically as diffusion equations. The difference between wave and diffusion
equations is the order of the time derivative; the wave equation has a second
time derivative while the diffusion equation has a first time derivative.

Although the same general procedure can be applied to derive passive
analog circuits for both types of equations, the resultant analogs are distinct.
Analogs for the vibration of structures are force-current, velocity-voltage
finite-difference circuits of the wave equation. These types of circuits are
called mobility analogs. Electrically these circuits consist of capacitors,
inductors and transformers. If viscous damping is included, resistors
then are added in the mobility circuits. The electrical impedance of mobility
analogs corresponds to mobility whereas the electrical admittance of mobility
analogs corresponds to mechanical impedance.

Analogs for heat transfer and fluid flow are 'flow'-current 'dependent-
variable'-voltage, finite-difference circuits of the diffusion equation. These
circuits are referred to as quasi-mobility analogs; and differ from mobility
analogs in the type of electrical components needed and in the mechanical
interpretation of the current and voltage. Current is assumed analogous to
heat flow and temperature is the dependent variable for heat transfer simu-
lation. Electrically, quasi-mobility analogs consist chiefly of resistors
and capacitors, although transformers may sometimes be required.

Another important analogy common to static analyses of structures

is a force-current, displacement-voltage, finite-difference circuit. This
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type of circuit is referred to as a static-mobility analog and consists of
resistors and transformers. Such analogs electrically describe, in finite-

. difference form, the static behavior of linear eleastic structures as defined
by elasticity theory where the body forces are neglected. Since the spatial
derivatives remain unchanged, the equations provided by the elasticity
theory differ in form from that of a wave equation only in the absence of
the time derivative term. Thus, since elasticity theory contains all of the
spatial derivatives for a given structure, an important use of static-mobility
analogs is to derive mobility analogs. By simply changing the resistors to
inductors and adding capacitors to the nodes (to account for the inertial or
body forces), static analogs are routinely converted to mobility analogs.

This procedure is illustrated only for the simple beam.

In contrast with the RLC (resistor-inductor-capacitor) or RC circuits
common to the simpler, discrete physical systems, transformers are intro-
duced to describe the spatial characteristics of distributed systems. Mathe-

matically, these spatial characteristics are defined as the differential

operators of the Ap-artial differential equations and become increasingly com-

plex in progressing from rectangular to polar coordinates. Synthesizing cir-
cuits for higher order spatial derivatives is one of the most difficult tasks in
analog derivation.

The analog derivation procedure emphasized in this discussion consists
of recognizing circuit laws electrically equivalent to first-order finite differ-
ence equations representing the dynamic behavior of the structures. Force
equilibrium corresponds to Kirchhoff's current laws, stress-strain relation-
ships to Ohm's law, and compatibility expressions to voltage drop relation-
ships. In contrast to this procedure, Barnoski (Reference 1) and Barnoski
and Freberg (Reference 3) equate strain energy with electrical power to ob-

tain static analogs of complex structures.
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The mobility analogs of this discussion are considered as elemental
structural building blocks and can be used to synthesize electrical models
of complete structural systems. In general, these electrical models are
set up on a passive element analog computeryand a planned experimental
program is performed electrically. An alternate application of the analog
circuits is to use circuit analysis procedures to analyze complex structures
by digital computers. Such approaches are suggested by Barnoski (Ref-
erence 2) and Walker (Reference 20) and, although still undeveloped, should
result in analysis procedures for complex structural systems incorporating

the advantages of both analog and digital computers.
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